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Abstract. We found Hermitian realizations of the position vectorEr, the angular momentumE3 and
the linear momentumEp, all behaving like vectors under thesuq(2) algebra, generated byL0 and
L±. They are used to introduce aq-deformed Schr̈odinger equation. Its solutions for the particular
cases of the Coulomb and the harmonic oscillator potentials are given and briefly discussed.

1. Introduction

The general framework of the present study is the theory of quantumsuq(2) algebra which has
been the subject of extensive developments. Our purpose is to derive aq-deformed Schr̈odinger
equation invariant under thesuq(2) algebra. Here we discuss the case of spinless particles.
So far, a general procedure (see, for example, [1–3]) was to write down the Hamiltonian in
spherical coordinates and replace thesu(2) Casimir operatorC = EL2 by Cq + f (q) where
q is the deformation parameter,Cq the Casimir operator of thesuq(2) algebra andf (q)
an arbitrary function with the propertyf (q) → 0 whenq → 1. Of course this method
introduces arbitrariness through the functionf and sometimes anomalies as, for example,
a bound spectrum [2] for the free Hamiltonian. Here we aim at removing such kind of
arbitrariness and anomalies.

The novelty of our study is that by using the tensorial method we define Hermitian
realizations of some elementary operators (position and angular momentum) behaving as
vectorswith respect tosu(2)q algebra, generated by the operatorsL0 andL±. This allows us
to introduce in a consistent way other operators, like the linear momentum and Hamiltonians
having definite properties with respect to the deformed algebra. By this method the deformed
parts of the operators are well defined, the only abitrary parts being the undeformed ones, as
it will be further seen in the definition of the linear momentum. Proceeding on this line we
shall also show that the angular momentum entering the expression of the Hamiltonian has
components30 and3±1, different fromL0 andL±. This leads to a proper behaviour of the
free Hamiltonian. Here we consider two cases of central potentials: the harmonic oscillator
and the Coulomb potential. Once the Hamiltonian is constructed we are able to derive both
the spectrum and the eigenfunctions in a consistent way for each case. Our arguments are as
follows.

The usual quantum mechanics of a point-like particle is constructed from two vectors: the
position vectorEr and the linear momentumEp = −ih̄ E∇. These two vectors are used to build
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all the other quantities as, for example, the angular momentum, the interaction potentials, etc,
according to the classical rules. In general, these operators do not commute, their commutation
relations following from the commutation relations ofEr and Ep.

In aq-deformed quantum mechanics the commutation relations between the generators of
thesuq(2) algebra,Li , and the position vectorEr are well defined inasmuch asEr is considered a
q-tensor of rank one (see section 2). Therefore, it is natural to takeri as the basic quantities from
which all the others should be built. Then, in deriving aq-deformed Schr̈odinger Hamiltonian,
invariant under thesuq(2) algebra, we searched for a realization of the linear momentumEp
entering the kinetic energy term. First it was necessary to find a realization forEr and forLi as
self-adjointoperators obeying commutation relations characteristic to the deformed algebra.
Then we looked for a realization ofEp in terms ofEr and ofLi . Observing thatEp can be written
as a sum of two terms which are parallel and perpendicular toEr, respectively, we found that
the deformation cannot be introduced in the radial part and conclude that this part must be
independent of deformation. Here we take it to be just the undeformed one. The perpendicular
part is explicitly deformed and writes as a vector product ofEr and of E3.

The paper is organized as follows. Section 2 contains the general commutation
relations involving theq-angular momentum. We introduce some quantities having definite
transformation properties with respect to thesuq(2) algebra, namely the invariantsC, C ′ and
c and the vectorE3 related toEL.

In section 3 we propose a realization of the position vectorEr and consistently of theq-
angular momentumEL, in terms of spherical coordinatesr, x0 = cosθ and ϕ, as for example
in [4,5].

The realization of the linear momentumEp is considered in section 4. We first build the part
of Ep perpendicular toEr, denoted byE∂. This is achieved by using the cross productEr × E3. We
find that the components ofE∂ satisfy the same type of commutation relations as the components
of Er.

Section 5 introduces the eigenfunctions of theq-deformed angular momentum written as
power series ofx0 = cosθ . We show that the result is a generalization of the hypergeometric
functions2F1(a, b, c; 1

2; x2
0) and2F1(a, b, c; 3

2; x2
0) which can be related to theq-deformed

spherical functionsYlm(q, x0, ϕ). Some useful properties and relations satisfied by the
eigenfunctions are proved. In section 6, two particular cases ofq-deformed Schr̈odinger
equation containing a scalar potential are presented: the Coulomb and the three-dimensional
harmonic oscillator. Their eigensolutions are given and the removal of the accidental
degeneracy is discussed.

2. Theq-angular momentum

Thesuq(2) algebra is generated by three operatorsL+, L0 andL−, also named theq-angular
momentum components. They have the following commutation relations:

[L0, L±] = ± L± (1)

[L+, L−] = [2L0] (2)

where the quantity in square brackets is defined as

[n] = qn − q−n
q − q−1

. (3)

In the following we shall introduce quantities having definite transformation properties with
respect to thesuq(2) algebra. They will further be used to buildq-scalars and alsoq-vectors:
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such as, for instance, theq-linear momentum entering the expression of the Hamiltonian
operator.

First of all we recall thatsuq(2) algebra has an invariantC, called the Casimir operator

C = L−L+ + [L0][L0 + 1]. (4)

Its eigenvalue associated to a(2l + 1)-dimensional irreducible representation is

Cl = [l][ l + 1]. (5)

By definition aq-vector in this algebra is given by a set of three quantitiesvk, k = 0,±1
satisfying the following relations:

[L0, vk] = kvk (6)

(L±vk − qkvkL±)qL0 =
√

[2]vk±1 (7)

wherev±2 must be set equal to zero in the right-hand side of equation (7) whenk = ±1. This
definition is a particular case of an irreducible tensor of rank one (for the general case see, for
example, [6]).

By comparing the relations (1), (2) with (6), (7) we observe that the operatorsLk do not
represent the components of aq-vector. Such an observation is also pointed out in [7] in the
context ofq-tensor operators for quantum groups. The situation is entirely different from the
su(2) algebra whereLk form a vector in the usual sense. However, one can use the components
L± andL0 to define a new vectorE3 in the following manner:

3±1 = ∓1

√
1

[2]
q−L0L± (8)

30 = 1

[2]
(qL+L− − q−1L−L+). (9)

It is an easy matter to show that the operators3k satisfy the relations (6) and (7). The vector
E3 will be used in section 4 to construct the transverse part of the linear momentumEp.

Two q-vectorsEu and Ev satisfying equations (6) and (7) can be used to build a scalarS,
according to the following definition:

S = EuEv = −1

q
u1v−1 + u0v0 − qu−1v1 (10)

where the coefficients appearing in the sum are proportional to theq-Clebsch–Gordan
coefficients〈110|m−m0〉q . In this way the scalar product (10) becomes the ordinary scalar
product ofR(3) whenq = 1. By introducing a generalization of the cross product, twoq-
vectors can also be used to build anotherq-vector required by our approach, as will be shown
in section 4.

In the caseEu = Ev = E3, the scalar productE32 defines a second invariant [8],C ′, which is
not independent ofC. The eigenvalue ofC ′ is

C ′l =
[2l]

[2]

[2l + 2]

[2]
. (11)

Another invariant expression,c, defined as

c = q−2L0 + λ30 (12)

with

λ = q − 1

q
(13)
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will be frequently used in order to write the subsequent formulae in a more compact form. Its
eigenvalue is

cl = q2l+1 + q−2l−1

[2]
. (14)

The invariantsC,C ′ andc are not independent and can be written in terms of a single one. We
list here some relations between their eigenvalues:

C ′l =
2

[2]
Cl +

λ2

[2]2
C2
l

Cl = [2]

λ2
(cl − 1)

C ′l =
cl + 1

[2]
Cl.

It is worth noting that in the limitq → 1 bothC andC ′ turn into the Casimir invariantC = EL2

of su(2) with the eigenvaluel(l + 1), while c becomes equal to unity. The eigenvalues (11)
and (14) will be used in section 4 to define the action ofEp2 on deformed spherical harmonics.

We recall that the action of the operatorsL± on the productAiBj whereAi, Bj are
monomials having the magnetic numbersi, j is written as

L±(AiBj ) = q−j L±(Ai)Bj + qiAiL±1(Bj ). (15)

Finally, we mention that the results listed in this section are valid for any realization of
thesuq(2) algebra.

3. The position vector~r and a realization ofL0, L±

In theRq(3) space we define the position vectorEr as having three noncommutative components
r1, r0 andr−1, satisfying the following relations:

r0r±1 = q∓2r±1r0

r1r−1 = r−1r1 + λ r2
0 .

(16)

These equations are similar to equations (3.11) of [1]. They are typical for a noncommutative
algebra and have been chosen in order to be compatible with the index raising and lowering
operations. For instance, the results obtained by applyingL+ on r0r+1 and onr+1r0 are
compatible only if equation (16) holds.

The scalar quantityr2 defined according to equation (10)

r2 = Er2 = −1

q
r1r−1 + r2

0 − qr−1r1 (17)

commutes with allri and allLi of equations (1) and (2), providedri (i = 0,±1) satisfy the
conditions (6) and (7) to be a vector, which is the case here. Forq = 1 the scalarr is nothing
but the length of the position vectorEr. We shall keep this meaning forq 6= 1 too.

Searching for concrete realizations ofri ,L0 andL±, we begin by expressingL0 in spherical
coordinates as in theR(3) case:

L0 = −i
∂

∂ϕ
. (18)

The next step is to writeEr as a product ofr and of a unit vectorEx, depending on angles, so we
have

r±1 = rx±1

r0 = rx0.
(19)
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It remains now to find a realization ofx±1 in terms of the azimuthal angleϕ and ofx0, which
is in fact equal to cosθ , just as in the classicalR(3) case. From the relations (16), (17) and
(19) one can find

x1x−1 = − 1

[2]
(1− q2x2

0)

x−1x1 = − 1

[2]
(1− q−2x2

0).

(20)

This suggests that equations (16) can be satisfied by simple forms ofx1 andx−1 provided a
dilatation operatorN0 is introduced through the commutation relations

[N0, x
n
0 ] = nxn0 (21)

and having the hermiticity property

N+
0 = −N0 − 1. (22)

Then the realization ofx1 andx−1 satisfying (16) turns out to be

x1 = −eiϕ

√
q

[2]

√
1− q2x2

0q
2N0 (23)

x−1 = e−iϕ

√
1

[2]q

√
1− q−2x2

0q
−2N0. (24)

The realizations (23), (24) will be discussed in more detail in appendix B.
Taking now into account relations (21) and (22) and assuming

x+
0 = x0 = cosθ (25)

we get the expected hermiticity properties forx± as

x+
1 =
−1

q
x−1 (26)

x+
−1 = −qx1. (27)

All these arguments allow us to conclude that equations (23)–(25) define the realization of the
position vectorEr in theRq(3) space. (See appendix B.)

The following step is to search for a realization of thesuq(2) generators. The expressions
we propose forL+ andL− are

L+ =
√

[2]eiϕx̃
L0+1
1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 qL0 (28)

L− =
√

[2]e−iϕx̃
−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

L0 (29)

wherex̃±1 = e∓iϕx±1 depend onx0 only. The reason why instead ofx±1 we use herẽx±1,
where the phase factor has been removed, is that expressions likex

L0
±1 have no meaning, while

x̃
L0
±1 are well defined as discussed below equation (30). From equations (18), (28) and (29)

we can now construct the Casimir operatorC of equation (4). Its eigenfunctions are expected
to beq-spherical functions as in [4]. Forq = 1 they become ordinary spherical harmonics.
Therefore, they can take the form

Ỹlm(q, x0, φ) = eimϕ x̃m1 2lm(x0) (30)

where 2lm(x0) are theq-analogue of the associated Legendre functions. The functions (30)
will be derived and normalized in section 5.
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The construction of the generatorsL± and their action on forms having definitem will be
discussed in detail in appendix A. We demonstrate that expressions (18), (28) and (29) satisfy
the commutation relations (1) and (2) and hence we conclude that they are the realization of
thesuq(2) generators in theRq(3) space.

In appendix B we show thatEr, defined by (19)–(22), behaves indeed as a vector in this
suq(2) algebra, since it satisfies the relations (6) and (7) withEL given by (18), (28) and (29).

4. Theq-linear momentum ~p

The aim of this section is to introduce an expression of the linear momentum behaving like
a q-vector. We try to follow the general line of undeformed quantum mechanics, that is, to
define a position vectorEr and a linear momentum vectorEp which are the building blocks of the
quantum mechanical formalism. In the undeformed space the derivative∂

∂Er is a vector which
is supposed to be proportional to the linear momentum. In aq-deformed quantum mechanics
no such derivative exists and one is forced to search for other expressions.

In this approach we start by observing that the linear momentum can be written as made of
two parts: a part perpendicular toEx and another one parallel to it. The first one is defined with
the aid of the cross productEx× E3 and the second one is assumed to have the formEx 1

r
f (r ∂

∂r
+1),

wheref is a function which will be defined in the following. Then the components of the
transverse part, denoted by∂k, read

∂1 = q−1x130 − qx031 + x1c (31)

∂0 = x13−1− λx030 − x−131 + x0c (32)

∂−1 = −qx−130 + q−1x03−1 + x−1c (33)

wherec is the invariant defined in equation (12) and the termsxk c have been added to the
cross productEx× E3 in order to ensure the well-defined character with respect to the Hermitian
conjugation operation

∂+
k = −

(
−1

q

)k
∂−k. (34)

It can be checked that the quantities∂k form a vector as defined by equations (6) and (7).
Moreover, they satisfy the following relations:

∂0∂1 = q−2∂1∂0 (35)

∂0∂−1 = q2∂−1∂0 (36)

∂1∂−1 = ∂−1∂1 + λ∂2
0 . (37)

These equations are similar to (16) satisfied by the position vector. Equation (35) has been
directly obtained by commuting∂0 with ∂1. Equation (36) is the Hermitian conjugate of the
above one. Equation (37) can be obtained either from (35) or (36) by using the relation (7).

Also, by multiplying equations (31)–(33) with the correspondingxk and taking into
account the commutation relations (6) and (7) one gets

ExE∂ = −E∂ Ex = c. (38)

By commuting the invariantc with Ex one finds
E∂ = λ−2[c, Ex]. (39)

Taking now the matrix elements of the last relation one obtains

〈l + 1m′|E∂|lm〉 = [2l + 2]

[2]
〈l + 1m′|Ex|lm〉 (40)

〈l − 1m′|E∂|lm〉 = − [2l]

[2]
〈l − 1m′|Ex|lm〉. (41)
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From parity arguments one can also write

〈lm′|∂k|lm〉 = 0. (42)

The matrix elements ofEx can be calculated (see the next section) so that from replacing the
matrix elements ofE∂ by those ofEx with the aid of equations (40) and (41) one can obtain the
eigenvalues ofE∂2. These are

〈lm|E∂2|lm〉 = − [2l]

[2]

[2l + 1]

[2]
− c2

l . (43)

At the beginning of this section we mentioned that the component ofEp parallel toEx is
assumed to have the formEx 1

r
f (r ∂

∂r
+ 1). For simplicity we take heref (x) = x. In this case

the realization of theq-linear momentumEp is

Ep = −i

r

(
Ex(r ∂

∂r
+ 1)− E∂

)
. (44)

Then using equations (38) and (43) one can write

Ep2Ỹlm =
[
−1

r

∂

∂r

(
r
∂

∂r
+ 1

)
+

1

r2

(
[2l]

[2]

[2l + 2]

[2]
+ c2

l − cl
)]
Ỹlm. (45)

One can see that in the limitq → 1 one recovers the action of the Laplace operator on a
spherical harmonic which justifies our choice forf .

We mention that it is a simple but tedious matter to calculate the commutation relations
betweenEr and Ep and to verify that one gets the right result forq = 1. We do not display these
commutation relations here because they are rather intricate and unnecessary in the derivation
of a covariant Schr̈odinger equation.

We also note that the operatorE3, behaving as a vector under thesuq(2) algebra, can be
written as a cross product ofEr and Ep, but this does not bring any simplification because of the
commutation relations betweenEr and Ep.

5. The eigenfunctions of theq-angular momentum

By definition, the basis vectors8lm(q, x0, ϕ) forming an invariant subspace for a(2l + 1)-
dimensional irreducible representation ofsuq(2) are eigenfunctions ofL0 and of the Casimir
operatorC of equation (4). We begin by writing them as polynomials inx0 multiplied byxm1 :

8lm(q, x0, ϕ) = xm1
∑
k>0

akx
k
0 (46)

where the sum runs either overk even whenl−m is even or overk odd whenl−m is odd. In
both cases it runs up tol −m but it starts at zero for(l −m) even and at one for(l −m) odd.

As for theR(3) case, the basic equation which determines the matrix elements ofL+ and
L− is

L+L−8lm(q, x0, ϕ) = [l +m][ l −m + 1]8lm(q, x0, ϕ). (47)

This equation leads to the recursion relation

ak+2 = −q−2m [l −m− k][ l +m + k + 1]

[k + 1][k + 2]
ak. (48)

Then takinga0 = 1 we obtain for(l −m) even

8lm(q, x0, ϕ) = xm1
{

1− [l −m][ l +m + 1]

[2]!
(q−mx0)

2

+
[l −m][ l −m− 2][l +m + 1][l +m + 3]

[4]!
(q−mx0)

4 − · · ·
}

(49)
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while for (l −m) odd we get

8lm(q, x0, ϕ) = xm1
{

1

[1]!
(q−mx0)− [l −m− 1][l +m + 2]

[3]!
(q−mx0)

3

+
[l −m− 1][l −m− 3][l +m + 2][l +m + 4]

[5]!
(q−mx0)

5− · · ·
}
. (50)

In order to express these results in terms of aq-hypergeometric series it is necessary to write
all theq-numbers [n] in the form

[n] = qn − q−n
q − q−1

= [2]
(q2)

n
2 − (q2)−

n
2

q2 − q−2
= [2]

[n
2

]
q2
. (51)

For (l −m) even we have then

8lm(q, x0, ϕ) = xm1 2F1

(
q2; l +m + 1

2
,
−l +m

2
; 1

2
; q−mx2

0

)
(52)

while for (l −m) odd we get

8lm(q, x0, ϕ) = xm1 q−mx0 2F1

(
q2; l +m + 2

2
,
−l +m + 1

2
; 3

2
; (q−mx0)

2

)
. (53)

The argumentq2 in 2F1 specifies that all theq-numbers in the series expansion of2F1 must be
calculated withq2 instead ofq.

Moreover, we found that the functions8lm(q, x0, ϕ) satisfy the following simple relations:

x1
1

x0

1− q−2N0

1− q−2
8lm(q, x0, ϕ) = −[l −m][ l +m + 1]8lm+1(q, x0, ϕ) (54)

for (l −m) even, and

x1
1

x0

1− q−2N0

1− q−2
8lm(q, x0, ϕ) = 8lm+1(q, x0, ϕ) (55)

for (l −m) odd.
The normalized eigenfunctions ofC andL0 take now the form

Ylm(q, x0, ϕ) = (−1)
l−m

2

√
[2l + 1]

4π

(
[l −m− 1]!!

[l −m]!!

[l +m− 1]!!

[l +m]!!

)1/2

[2]
m
2 8lm(q, x0, ϕ)

(56)

for (l −m) even, and

Ylm(q, x0, ϕ) = (−1)
l−m−1

2

√
[2l + 1]

4π

(
[l −m]!!

[l −m− 1]!!

[l +m]!!

[l +m− 1]!!

)1/2

[2]
m
2 8lm(q, x0, ϕ)

(57)

for (l −m) odd. Their orthogonality relation becomes∫
Y +
l′m′(q, x0, ϕ)Ylm(q, x0, ϕ)dϕ d[x0] = δll′δmm′ (58)

where the integral overϕ is the same as for spherical harmonics, while the integral over d[x0]
defined on the interval(−1, 1) is the sum of∫ 1

0
xn0 d[x0] = 1

[n + 1]
(59)

and ∫ 0

−1
xn0 d[x0] = (−1)n

1

[n + 1]
. (60)
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The phase appearing in the right-hand side of the integral (60) is due to parity arguments.
Relation (59) is, in fact, the result of a discrete integration off (x0) = xn0 , performed by
dividing the integration interval(0, 1) in an infinite set of segments located between two
succesive pointsxk = qk andxk = qk+1 whereq < 1∫ 1

0
f (x0) d[x0] =

∞∑
k=0

f (x2k+1)(x2k − x2k+2). (61)

Looking now for the properties ofYlm, just as in theR(3) case, we found that the product
xk Ylm can be expressed in terms ofYl+1, m+k or Yl−1, m+k as follows:

x1Ylm(q, x0, ϕ) = ql−m
√

[l +m + 1][l +m + 2]

[2][2l + 1][2l + 3]
Yl+1m+1(q, x0, ϕ)

−q−l−m−1

√
[l −m][ l −m− 1]

[2][2l + 1][2l − 1]
Yl−1m+1(q, x0, ϕ) (62)

x0Ylm = q−m
√

[l −m + 1][l +m + 1]

[2l + 1][2l + 3]
Yl+1m(q, x0, ϕ)

−q−m
√

[l −m][ l +m]

[2l + 1][2l − 1]
Yl−1 m(q, x0, ϕ) (63)

x−1Ylm(q, x0, ϕ) = ql−m
√

[l −m + 1][l −m + 2]

[2][2l + 1][2l + 3]
Yl+1m−1(q, x0, ϕ)

−ql−m+1

√
[l +m][ l +m− 1]

[2][2l + 1][2l − 1]
Yl−1m−1(q, x0, ϕ). (64)

In addition, we have found three relations which express the noncommutativity ofxk with Ylm
and represent a generalization of the equations (16):

x0Ylm(q, x0, ϕ) = q−2m Ylm(q, x0, ϕ)x0 (65)

x1Ylm(q, x0, ϕ) = Ylm(q, x0, ϕ)x1

+
λ√
[2]
q−m−1

√
[l −m][ l +m + 1]Ylm+1(q, x0, ϕ)x0 (66)

x−1Ylm(q, x0, ϕ) = Ylm(q, x0, ϕ)x−1

− λ√
[2]
q−m+1

√
[l +m][ l −m + 1]Ylm−1(q, x0, ϕ)x0. (67)

The last two equations have been obtained from (65) by acting withL+ orL− which leads
to a rising or lowering ofm in Ylm.

6. A q-deformed Schr̈odinger equation

Taking into account all the above results, we assume that the Hamiltonian entering theq-
deformed Schr̈odinger equation is

H = 1
2 Ep2 + V (r) (68)

where operatorEp has been defined in section 4. The eigenfunctions of this Hamiltonian are

9(r, x0, ϕ) = rLuL(r)Ylm(q, x0, ϕ) (69)
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whereL is the solution of the following equation:

L(L + 1) = [2l]

[2]

[2l + 2]

[2]
+ c2

l − cl (70)

obtained from the requirement thatuL(r) remains finite in the limitr → 0.
This Schr̈odinger equation has simple solutions for the Coulomb potentialV (r) = −r−1

and for the oscillator potentialV (r) = 1
2r

2. The eigenvalues of the two Hamiltonians are

(Enl)Coulomb = − 1

2(n +L + 1)2
(71)

for the Coulomb potential and

(Enl)oscillator = (2n +L + 3
2) (72)

for the oscillator potential,n being the radial quantum number andL the solution of
equation (70), usually not an integer. We notice that the spectrum is degenerate with
respect to the magnetic quantum numberm, i.e. the essential degeneracy subsists. But the
eigenvalues (71) and (72) depend on two quantum numbers so that the accidental degeneracy
of theq = 1 case is removed. The dependence of eigenvalues onq can be obtained through
solving equation (70) forL.

The solution of the wave equation which does not depend onθ and ϕ gives for the
expectation value ofx2

0 the valueR2/[3] instead ofR2/3 obtained in the case of spherical
symmetry. The quantityR2 denotes the expectation value of the operatorr2 in each case.
It then results that the quadrupole moment as well as all the 22n-poles are different from
zero, although the wavefunction does not depend onθ andϕ. This clearly shows that the
Hamiltonian (68)–(70) has lost the spherical symmetry. One can mention, however, that it
gained another one, namely the symmetry under thesuq(2) algebra which may have new
physical implications.

We remark that there are three sources producing differences in the eigenvalue problem
between the case ofq-deformed Schr̈odinger equation and the case of spherical symmetry. The
first one is that theq-functionsYlm(q, x0, ϕ) differ from the spherical harmonicsYlm(θ, ϕ) as
shown in section 5. The second reason is that the coefficient of the centrifugal potential in the
radial Schr̈odinger equation is proportional toL(L+1), withL given by equation (70), and not
to l(l + 1), as in the sperical case. The third source is that in theq-deformed case the integral
overx0 is performed according to the relations (58)–(60).

As a final comment let us recall that forl = 0 one hascl = 1, henceL = 0. As
a consequence thel = 0 levels are independent of the deformation parameter both for the
harmonic oscillator and the Coulomb potential. An important physical aspect is that the
centrifugal barrier disappears forl = 0 in contrast to the HamiltonianHq of [2]. Moreover, the
whole Coulomb spectrum of [2] is different from ours. A careful analysis of the results shows
that the differences come from the different forms of the centrifugal terms in the Hamiltonian.

Physical applications with numerical examples of theq-deformed Coulomb and harmonic
oscillator spectra will be considered elsewhere.
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Appendix A.

We explain here in detail the construction (28), (29) of the operatorsL±.
We start by observing that, according to the realization (23)–(25) the most general

expression having the positive magnetic numberm can be written as a series:

9m =
∑
k

ak9mk = xm1
∑
k

akx
k
0. (A.1)

We now raise the magnetic numberm tom + 1 of a single term9mk = xm1 xk0 in the series by
acting on it with the operatorL+ according to the rule (15)

L+9mk = L+x
m
1 x

k
0 =

√
[2]xm+1

1 xk−1
0

1− q−2k

1− q−2
qm. (A.2)

The result (A.2) shows that a possible realization ofL+ is

L+ =
√

[2]x1
1

x0

1− q−2N0

1− q−2
qL0 (A.3)

provided one forbids the derivative operator contained inx1
1
x0

1−q−2N0

1−q−2 to act onx1 which is a
function ofx0. (See definition (23) ofx1.) This can be achieved by performing the following
operations on the expression (A.3) ofL+: one multiplies it to the right withx−L0

1 in order to
removexm1 from9(k)

m and to the left withxL0+1
1 in order to create the factorxm+1

1 entering the
expression of9(k−1)

m+1 . The generatorL+ then reads as

L+ =
√

[2]eiϕx̃
L0+1
1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 qL0 (A.4)

wherex̃1 defined by

x1 = eiϕx̃1 (A.5)

has been introduced in order to have a clear notation for powers likex
L0
±1.

A similar problem occurs in quantum mechanics, but there the procedure eliminating
the derivation ofx1 is different. The clue is that the result of the derivative∂

∂θ
xm1 is exactly

cancelled out by the term i ctgθ ∂
∂ϕ

in the expression of the generator.
By taking now the Hermitian conjugate of (A.4) we obtain the realization of the generator

L−

L− =
√

[2]e−iϕx̃
−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

L0. (A.6)

It remains only to show thatL0 defined in (18) andL± defined above satisfy the commutation
relations (1) and (2). It is easy to see that the commutation relations (1) are satisfied ifL0 has
the expression (18). In order to prove the relation (2) we write separately the two terms of the
commutator:

L+L− = [2]x̃L0
1

1

x0

1− q−2N0

1− q2
x̃
−L0+1
1 x̃

−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

2L0−1 (A.7)

L−L+ = [2]x̃L0
−1

1

x0

1− q2N0

1− q2
x̃
L0+1
−1 x̃

L0+1
1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 q2L0−1. (A.8)

We notice then that the factorx̃−L0+1
1 x̃

−L0+1
−1 in (A.7) can be written as a product of(−L0 + 1)

parentheses:

x̃
−L0+1
1 x̃

−L0+1
−1 =

(
− 1

[2]

)−L0+1

(1− q2x2
0)(1− q6x2

0) . . . ((1− q−4L0+2x2
0) (A.9)
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and hence it can be replaced byx̃−L0
1 x̃

−L0
−1 when moving over1

x0

1−q2N0

1−q2 to the right, up to

the place in front of̃xL0
−1. One obtains in this way an expression having the factorx̃

−L0
1 in the

extreme right and̃xL0
1 in the extreme left. An analogous transformation can be performed in

equation (A.8)) by moving̃xL0+1
−1 x̃

L0+1
1 and getting the same factors in the extreme right and

left. The difference of the two equations is then

L+L− − L−L+ = x̃L0
1 [2L0]x̃−L0

1 . (A.10)

Moving now x̃L0
1 to the right in order to cancel̃x−L0

1 we get

L+L− − L−L+ = [2L0] (A.11)

as required.
Finally, considering the limitq → 1 we notice that the expression1

x0

1−q2N0

1−q2 goes to ∂
∂x0

and the realization (A3) ofL+ becomes

L+(q = 1) =
√

2eiϕx̃
L0+1
1

∂

∂x0
x̃
−L0
1 (A.12)

wherex̃1 is now

x̃1 = − 1√
2

√
1− x2

0 = −
sinθ√

2
. (A.13)

Performing the derivative with respect tox0 in (A.12) we get, after introducing the spherical
coordinates,

L+(q = 1) = −
√

2eiϕ

(
sinθ

−√2

)L0+1( 1

sinθ

∂

∂θ

)(
sinθ

−√2

)L0

= eiϕ

(
∂

∂θ
− L0 ctgθ

)
(A.14)

which is the classical expression.

Appendix B.

In this appendix we show thatx±1,0 defined by (23)–(25) satisfy the relations (6), (7) provided
xi satisfy the commutation relations (16) andL± are given by equations (28), (29).

First we write explicitly the commutation relation (16)

(L+x1− qx1L+)q
L0 =

√
[2]eiϕx̃

L0+1
1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 qL0 x̃1eiϕ

−qx̃1eiϕeiϕx̃
L0+1
1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 qL0 x̃1 (B.1)

and demonstrate thatx1 is the highest component. Indeed, by moving eiϕ from right to left in
the first term in the right-hand side of the above equation we get√

[2]e2iϕ

(
x̃
L0+2
1

1

x0

1− q−2N0

1− q−2
x̃
−L0−1
1 qL0+1x̃1− qx̃L0+2

1

1

x0

1− q−2N0

1− q−2
x̃
−L0
1 qL0

)
= 0. (B.2)

Next, by acting withL− onx1 we get

(L−x1− qx1L−) qL0 =
√

[2]

(
e−iϕx̃

−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

L0 x̃1eiϕ

−qeiϕx̃1e−iϕx̃
−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

L0

)
qL0+1

=
√

[2]

(
x̃
−L0
−1

1

x0

1− q2N0

1− q2
x̃
L0+1
−1 x̃1− x̃1x̃

−L0+1
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1

)
qL0+1. (B.3)
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Now, using equations (20) we have for the right-hand side of (B.3):(
x̃
−L0
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1

1− q−2x2
0

−[2]
− 1− q2 x2

0

−[2]
x̃
−L0
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1

)
qL0+1 =

√
[2]x0 (B.4)

as expected.
The last commutation relation we give explicitly is

(L−x0 − x0L−) qL0 =
√

[2]

(
e−iϕx̃

−L0
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1q

L0x0

−x0e−iϕx̃
−L0
−1

1

x0

1− q2N0

1− q2
x̃
L0
−1x̃

L0
−1q

L0

)
qL0. (B.5)

Proceeding as above and movingx0 up to 1
x0

it can be easily shown that the right-hand side of

(B.5) is actually equal to
√

[2] x−1.
In a similar manner it can be proved thatx−1 is the lowest component (see relations (B.1),

(B.2)) and that acting withL+ onx−1 andx0 one getsx0 andx+1, respectively. This completes
our proof.
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